Ultrasonic Cavitation Erosion Behavior of CoCrxFeMnNi High-Entropy Alloy Coatings Prepared by Plasma Cladding

نویسندگان

چکیده

CoCrxFeMnNi (x represents the atomic percentage of Cr element, x = 20, 25, 30, and 35, denoted as Cr20, Cr25, Cr30, Cr35 alloys) high-entropy alloy (HEA) coatings were cladded by plasma arc on surface 0Cr13Ni5Mo steel. The effects elements cavitation erosion mechanisms studied comparing differences microstructure, microhardness, volume loss (CVL), rate (CER), eroded morphologies between coatings. As content increased, microhardness increased continuously, microstructure transformed into fine dendrites. microhardnesses 223.9 HV, 250.5 265.2 333.7 respectively. With structural change, slip pattern shifted from uniform distribution to along grain boundary, increasing resistance. Additionally, strain hardening capacity with reduced stacking fault energy (SFE). resistance (CR) HEA increase in content. CVL 20 h coating was only 26.84% that steel, peak CER 28.75% fracture damage four an obvious lamellar structure fibrous fracture.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by HVOF spraying.

The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC-10Co-4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC-10Co-4Cr coating had better cavitation erosion-corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl ...

متن کامل

Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

High-entropy alloys (HEAs) are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6) HEA coatings. The results show that laser rapid soli...

متن کامل

Microstructure of Laser Re-Melted AlCoCrCuFeNi High Entropy Alloy Coatings Produced by Plasma Spraying

An AlCoCrCuFeNi high-entropy alloy (HEA) coating was fabricated on a pure magnesium substrate using a two-step method, involving plasma spray processing and laser re-melting. After laser re-melting, the microporosity present in the as-sprayed coating was eliminated, and a dense surface layer was obtained. The microstructure of the laser-remelted layer exhibits an epitaxial growth of columnar de...

متن کامل

Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings.

Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of exper...

متن کامل

Improving the Erosion Behavior of Inconel 625 Substrate by PTA-Deposited Stellite6/B4C Composite Cladding

The purpose of this study was to improve the erosion behavior of Inconel 625 alloy by plasma transferred arc-deposited stellite6/B4C composite cladding. For this purpose, 5 wt.% of boron carbide was added to the stellite6 clad. Phase analysis and microstructure evaluation were conducted by Optical Microscope, Field Emission Scanning Electron Microscope (FESEM), and Energy-dispersive Spectroscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metals

سال: 2023

ISSN: ['2075-4701']

DOI: https://doi.org/10.3390/met13030515